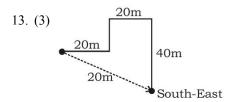
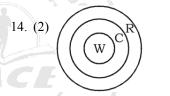
RACE

SSC CGL - 180614 GRAND TEST HINTS AND SOLUTIONS


ANSWER KEY

1	(2)	26	(3)	51	(2)	76	(2)
2	(4)	27	(1)	52	(3)	77	(3)
3	(2)	28	(1)	53	(2)	78	(2)
4	(4)	29	(3)	54	(4)	79	(1)
5	(3)	30	(2)	55	(2)	80	(3)
6	(2)	31	(3)	56	(4)	81	(1)
7	(4)	32	(1)	57	(2)	82	(2)
8	(3)	33	(4)	58	(3)	83	(4)
9	(4)	34	(1)	59	(3)	84	(4)
10	(4)	35	(3)	60	(4)	85	(3)
11	(4)	36	(2)	61	(3)	86	(1)
12	(1)	37	(3)	62	(4)	87	(1)
13	(3)	38	(4)	63	(3)	88	(1)
14	(2)	3 9	(1)	64	(3)	89	(4)
15	(4)	40	(3)	65	(4)	90	(3)
16	(4)	41	(2)	66	(3)	91	(1)
17	(3)	42	(1)	67	(2)	92	(2)
18	(4)	43	(2)	68	(3)	93	(4)
19	(2)	44	(4)	69	(2)	94	(2)
20	(2)	45	(1)	70	(4)	95	(4)
21	(1)	46	(2)	71	(1)	96	(2)
22	(3)	47	(1)	72	(4)	97	(3)
23	(3)	48	(2)	73	(2)	98	(3)
24	(1)	49	(3)	74	(3)	99	(3)
25	(3)	50	(2)	75	(1)	100	(2)


- 1. (2) 'Oval' is related to 'Circle' in the same way 'Rectangle' is related to Square.
- 2. (4) A bracelet is worn around the wrist, and a belt is worn around the waist.
- 3. (2) A vamp is part of a shoe, and a hood is part of a car.
- 4. (4) $\frac{18 \times 18}{2} = \frac{324}{2} = 162$; Similarly, $\frac{36 \times 36}{2} = \frac{1296}{2} = 648$
- 5. (3) Loss of memory is referred to as Amnesia. Similarly, loss of movement is referred to as Paralysis.
- 6. (2) Except Nagpur, all are north indian cities.
- 7. (4) The scientific study of the second is called the first in all the pairs except D.
- 8. (3) Kennel is a shelter for a pet dog, stable is a shelter for horses. Den is a living place of lion. But lock is used for safety of a door.
- 9. (4) 5+2=7, 6+3=9, 2+4=6; But 3+5=8? 6

- 10. (4) a **b** c / **c** b a / a b **c** / c b **a**
- 11. (4) $5 \times 8 = 28 \rightarrow 5 \times 8 = 40 \rightarrow 5 + 8 = 13$, $13 - 1 = 12 \rightarrow 40 - 12 = 28$ $3 \times 7 = 12 \rightarrow 3 \times 7 = 21 \rightarrow 3 + 7 = 10$, $10 - 1 = 9 \rightarrow 21 - 9 = 12$ $8 \times 6 = 35 \rightarrow 8 \times 6 = 48 \rightarrow 8 + 6 = 14$, $14 - 1 = 13 \rightarrow 48 - 13 = 35$ $13 \times 13 = ? \rightarrow 13 \times 13 = 169 \rightarrow 13 + 13 = 26$, $26 - 1 = 25 \rightarrow 169 - 25 = 144$

12. (1)
$$(7)^2 + (5)^2 + (3)^2 = 49 + 25 + 9 = 83$$

 $(6)^2 + (4)^2 + (2)^2 = 36 + 16 + 4 = 56$
 $(8)^2 + (9)^2 + (1)^2 = 64 + 81 + 1 = 146$

It is clear from the diagram that I am in south-east direction with respect to the original positon.

- 1. 3 2. 5
- 15. (4) Suppose present age of Mrs. Lata = x years Present age of son = y years;

∴
$$x + y = 64$$
 ...(1)
According to the question, $x - 8 = 3$ ($y - 8$)
∴ $x - 8 = 3y - 24 \Rightarrow x - 3y = -16$...(2)
From equations (1) and (2), $y = 20$;
∴ Age of Mrs. Lata = $64 - 20 = 44$ years

- 16. (4) $12 \times 2 + 3 = 27$; $27 \times 3 + 4 = 85$; $85 \times 4 + 5 = 345$; $345 \times 5 + 6 = 1731$
- 17. (3) $A \xrightarrow{+3} D \xrightarrow{+3} G \xrightarrow{+3} J$ $Y \xrightarrow{-3} V \xrightarrow{-3} S \xrightarrow{-3} P$ $K \xrightarrow{+3} N \xrightarrow{+3} Q \xrightarrow{+3} T$ Similarly, $Q \xrightarrow{-3} J \xrightarrow{-3} J \xrightarrow{-3} F$
- 18. (4) Comparing (i) and (iii) dice we have,

Тор	3	2	1
Bottom	4	5	6

- 19. (2) Some teachers may be writers and vice-versa.
- 21. (1)

22. (3) Let x and y be the ten's and unit's digits respectively of the numeral denoting the woman's age.

Then, woman's age = (10x + y) years;

husband's age = (10y + x) years.

Therefore (10y + x) - (10x + y) = (1/11)(10y + x + 10x)

$$\Rightarrow (9y - 9x) = (1/11)(11y + 11x) = (x + y)$$

$$\Rightarrow 10x = 8y \Rightarrow x/y = 4/5 \Rightarrow 10x + y = 10 \times 4 + 5 = 45$$

51. (2) In 2013 collaboration with U.S.A = $\frac{64.8}{360} \times 1200 = 216$

In 2014 collaboration with U.S.A = $\frac{75.6}{360} \times 1500 = 315$

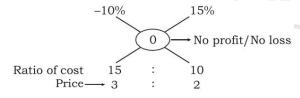
 \therefore Required difference = 315 - 216 = 99

52. (3) In 2013 =
$$\frac{50.4}{3600} \times 1200 = 168$$
; In 2014 = $\frac{43.2}{3600} \times 1500 = 180$

 \therefore Required Ratio = 168 : 180 = 14 : 15

53. (2) In 2013 =
$$\frac{54}{360} \times 1200 = 180$$
; In 2014 = $\frac{46.8}{360} \times 1500 = 195$

 \therefore Required change = $\frac{15}{180} \times 100 = 8\frac{1}{3}\%$ increase


54. (4) $x = 3 + 2\sqrt{2}$ and xy = 1

$$\Rightarrow y = \frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} = 3 - 2\sqrt{2}$$

$$\therefore x + y = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} = 6$$

Again,
$$\frac{x^2 + 3xy + y^2}{x^2 - 3xy + y^2} = \frac{(x+y)^2 + xy}{(x+y)^2 - 5xy} = \frac{6^2 + 1}{6^2 - 5} = \frac{37}{31}$$

55. (2) Loss % = -10%, Profit % = 15%By alligation Rule,

According to the question,

Let $CP_1 = 300$ units, $CP_2 = 200$ units

$$SP_1 = \frac{300 \times 90}{100} = 270 \text{ units }; SP_2 = \frac{200 \times 115}{100} = 230 \text{ units}$$

Total SP = 270 + 230 = 500 units

 $500 \text{ units} = ₹30,000 \Rightarrow 1 \text{ unit} = ₹60$

100 units = ₹ 60 × 100 = ₹ 6000

Difference in cost prices = ₹ 6000

56. (4) Let initial speed =
$$15 \text{ km/hr}$$

 \therefore Reduced speed = 15 - 1 = 14 km/hr

Time = 30 hours in both case.

 \therefore Distance (in case I) = $15 \times 30 = 450 \text{ km}$

& Distance (in case II) = $14 \times 30 = 420 \text{ km}$

:. Difference = 450 - 420 = 30 km

But, the given difference = 10 km

$$\therefore 30 \rightarrow 10$$

$$\Rightarrow 1 \rightarrow \frac{10}{30} = \frac{1}{3} \qquad \Rightarrow 15 \rightarrow \frac{1}{3} \times 15 = 5$$

i.e., initial speed = 5 km/hr

57. (2) Number of passengers after getting down and getting in at the first station = 240 - 12 + 22 = 250

Passengers left in the train after the second station

$$=250-\frac{1}{5}\times250=200$$

Let x people get down at the third station then According to the question,

$$200 + 32 - x = 240 \times \frac{80}{100} \Rightarrow 232 - x = 192 \Rightarrow x = 40$$

58. (3) Cost price of an article A = ₹ 160

Selling price of A =
$$160 \times \frac{120}{100}$$
 =₹192

According to the question, Cost price of B = ₹ 192 Selling price of B = ₹ 240, Profit = 240 - 192 = ₹ 48

% Profit =
$$\frac{48}{192} \times 100 = 25\%$$

59. (3) Bullets Train

Distance covered in 45 seconds = 330×45 m

Required speed = $\frac{330 \times 45}{11 \times 60} \times \frac{18}{5}$ km/hr = 81 km/hr

60. (4)
$$\frac{4}{3}\pi(r_1^3+r_2^3+r_3^3)=\frac{4}{3}\pi(6)^3$$

$$\Rightarrow$$
 27 + 64 + r_3^3 = 216 \Rightarrow r_3^3 = 125 \Rightarrow r_3 = 5 cm

Tiger : Deer leaps taken per minute 5 : 4Distance covered per leap 8 m : 5 mSpeed $\longrightarrow 40 \text{ m/min}$: 20 m/min

Both are running in the same direction, so relative speed = (40 - 20) = 20 m/min.

Actual distance between deer and tiger = $50 \times 8 = 400 \text{ m}$

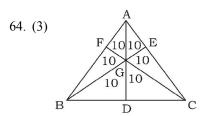
Time taken by tiger to overtake deer $=\frac{400}{20}=20 \text{ min}$

Distance travelled by tiger in 20 min = $20 \times 40 = 800$ m

62. (4) The total cost of truck for a year

$$= 250000 + \frac{250000 \times 2}{100} + 2000 = \text{ } 257000$$

To get a return of 15% he must earn annualy


$$=\frac{257000\times15}{100}=₹38550$$

Hence, monthly rent =
$$\frac{38550}{12}$$
 =₹3212.50

$$30 \times 25 \times 35 = P_2 \times 30 \times 28 \Rightarrow P_2 = \frac{125}{4} = 31.25$$

$$\Rightarrow$$
 P₂ = 32 pages (pages will always be integers)

So, Required percentage =
$$\frac{2}{30} \times 100 = 6.66\%$$

Total area of $\triangle ABC = 60 \text{ cm } 2$

Hence the area of quadrilateral BDGF will be = 20 cm^2

∴ S.P. of 100 oranges =
$$₹\frac{48}{12} × 100 = ₹400$$

: profit % =
$$\frac{400 - 350}{350} \times 100 = \frac{100}{7} = 14\frac{2}{7}\%$$

66. (3) Neha
$$\rightarrow$$
 20 \longrightarrow 5

Vertika \rightarrow 25 \longrightarrow 100 \longrightarrow 4

Neha+Vertika+ Monika \rightarrow 10

Hence share of monika = $\frac{1}{10}$ × 700 = ₹70

67. (2)
$$10\sin^4 A + 15\cos^4 A = 6$$

$$\Rightarrow 10\sin^4 A + 15(1 - \sin^2 A)^2 = 6$$

$$\Rightarrow 10\sin^4 A + 15 + 15\sin^4 A - 30\sin^2 A = 6$$

$$\Rightarrow 25\sin^4 A - 30\sin^2 A + 9 = 0$$

$$\Rightarrow 25\sin^4 A - 15\sin^2 A - 15\sin^2 A + 9 = 0$$

$$\Rightarrow 5\sin^2 A (5\sin^2 A - 3) - 3 (5\sin^2 A - 3) = 0$$

$$\Rightarrow 5\sin^2 A - 3 = 0$$

$$\Rightarrow \sin^2 A = \frac{3}{5} \qquad \therefore \cos^2 A = \frac{2}{5}$$

$$\therefore \cos^2 A = \frac{2}{5}$$

$$\therefore$$
 27cosec⁶ A + 8sec⁶ A

$$=27\times\left(\frac{5}{3}\right)^3+8\times\left(\frac{5}{2}\right)^3=27\times\frac{125}{27}+8\times\frac{125}{8}=125+125=250.$$

$$\therefore$$
 Required numbers = $168 \times 15 = 2520$

$$168 \times 16 = 2688, 168 \times 17 = 2856$$

69. (2)
$$\sin\theta + \csc\theta = 4 \Rightarrow \sin\theta + \frac{1}{\sin\theta} = 4$$

let $\sin\theta = x$;

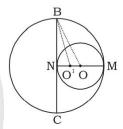
$$x + \frac{1}{x} = 4$$

$$\therefore \sin \theta - \csc \theta = \left(x - \frac{1}{x}\right) - 2 \times \frac{1}{x} \times x$$

$$= x^{2} + \frac{1}{x^{2}} - 2 = \left(x + \frac{1}{x}\right)^{2} - 2 - 2 = (4)^{2} - 4 = 16 - 4 = 12$$

$$\therefore \sin \theta - \csc \theta = \sqrt{12} = 2\sqrt{3}$$

70. (4)
$$3 + \frac{1}{\sqrt{3}} + \frac{1}{(3+\sqrt{3})} \times \frac{(3-\sqrt{3})}{(3-\sqrt{3})} - \frac{1}{3-\sqrt{3}} \times \frac{(3+\sqrt{3})}{(3+\sqrt{3})}$$


$$=3+\frac{1}{\sqrt{3}}+\frac{1}{6}(3-\sqrt{3})-\frac{1}{6}(3+\sqrt{3})$$

$$=3+\frac{1}{\sqrt{3}}+\frac{1}{2}-\frac{\sqrt{3}}{6}-\frac{1}{2}-\frac{\sqrt{3}}{6}$$

$$=3+\frac{1}{\sqrt{3}}-\frac{2\sqrt{3}}{6}=3+\frac{1}{\sqrt{3}}-\frac{\sqrt{3}}{3}=3+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}=3$$

71. (1) OM = 4 cm = radius of smaller circle and O'M = 6 cm = radius of bigger circle \therefore O'N = 8 - 6 = 2 cm

$$\therefore O'N = 8 - 6 = 2 \text{ cm}$$
In $\triangle O'NB$,

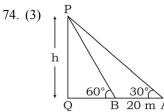
$$(O'B)^2 = (O'N)^2 + (BN)^2$$

$$\Rightarrow$$
 (BN) $2 = 36 - 4 = 32$

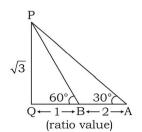
$$\Rightarrow$$
 BN = $4\sqrt{2}$

$$\therefore NC = BN = 4\sqrt{2}$$

:. BC =
$$4\sqrt{2} + 4\sqrt{2} = 8\sqrt{2}$$
 cm


72. (4)
$$\sin 720^{\circ} - \cot 270^{\circ} - \sin 150^{\circ}$$
. $\cos 120^{\circ}$
= $\sin (2 \times 360^{\circ} + 0^{\circ}) - \cot (360^{\circ} - 90^{\circ})$

$$-\sin(90^{\circ} + 60^{\circ}) \cdot \cos(90^{\circ} + 30^{\circ})$$


$$= \sin 0^{\circ} - \cot 90^{\circ} + \cos 60^{\circ} \cdot \sin 30^{\circ}$$

$$=0-0+\left(\frac{1}{2}\times\frac{1}{2}\right)=\frac{1}{4}$$

73. (2) Since $1 \le x \le 2$, we have $x - 1 \ge 0$ and $x - 3 \le 0$ or $3 - x \ge 0$

20 m A (original value)

PQ = Tower = h metre (let)

Ratio value

Original value

$$AB \rightarrow 2$$

 $\therefore \sqrt{3}$

$$10\sqrt{3}$$

i.e. height of the tower = h (ratio value = $\sqrt{3}$)

$$= 10\sqrt{3}$$
 metre.

75. (1) $(3a+1)^2 + (b-1)^2 + (2c-3)^2 = 0$

On comparison, we get

$$(3a+1)=0 \Rightarrow 3a=-1$$

$$(b-1)=0 \Rightarrow b=1$$

$$(2c-3)$$
 $2=0 \Rightarrow 2c=3$

Now,
$$(3a + b + 2c) = -1 + 1 + 3 = 3$$

4 SSC CGL

- 76. (2) Replace 'for' by 'on'.
- 77. (3) Conjunction 'not only' is followed by 'but also'. Thus, remove 'as well' as it makes it superfluous.
- 78. (2) 'Many a' is singular in nature. Hence, it takes singular verb, and singular noun after it. Thus, replace 'are' by 'is'.
- 79. (1) Since we are talking about the disparity present in two different section of the society, it will take 'between'.
- 84. (4) 'pass off' means '(of an event) to take place and be completed in a particular way'.

